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1. Introduction

This paper deals with optimal damping of steady state sinusoidal oscillations in vibratory
systems. A simple spring–mass system subjected to sinusoidal excitation with known frequency is
considered as an example. The discrete-time control algorithm developed by Lindquist and
Yakubovich [1] is proposed for the problem.
The control algorithm application and the design of the active absorber presented in this paper

is motivated by the problem of suppressing vibrations of a rotor with mass imbalance. The mass
unbalance of the rotor gives rise to periodic excitations whose nominal frequencies can be
determined. The active absorber designed here will be able to suppress the resulting steady state
oscillations for a wide range of excitation frequencies and it will be optimal for all values of
amplitudes and phases of the excitation.
The problem of controlling vibration in the presence of sinusoidal excitations was studied by

Lee and Sinha [2]. They proposed an optimal control algorithm developed by Johnson [3].
Johnson’s algorithm requires the external excitation be modeled by a system of linear differential
equations of finite order. Therefore, it can be applied if the excitation is periodic since a periodic
excitation can always be resolved into sinusoidal components that can be expressed as solutions of
second order differential equations. Lee and Sinha [2] applied this algorithm for the case of a
single sinusoidal excitation acting on a spring–mass system and showed that their active vibration
absorber gave a better overall performance than optimal passive vibration absorbers [4]. The
active absorber was designed assuming that the excitation frequency equals the natural frequency
of the system. Such an absorber will completely suppress oscillations at the resonance condition
but the system will have non-zero amplitude of vibrations at other excitation frequencies.
Ma and Sinha [5] used a multi-layer neural network (MNN) along with the Johnson algorithm

based control system. In this approach, the MNN was used to learn the non-linear mapping
between the excitation frequency and the feedback gains for the Johnson algorithm based
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controller. Once the learning phase is completed, the neural network acts as an online optimal
controller by taking online measurements of the rotor speeds as inputs to suppress the steady state
oscillations. Wang and Sinha [6] designed a neural network based controller to compensate for
uncertainties in system parameters and excitation frequencies. They employed two online
feedforward MNNs. One MNN was used to compensate for modelling errors in the output model
by using an online training algorithm with linkweights chosen such that the errors between the
measured system states and states predicted by the system model were minimized. The other
MNN was used to produce a correction in the control input for reduction in the vibratory
response of the structure by using an online training algorithm with linkweights that minimized an
error function.
In this paper we design an optimal and robust regulator in the discrete-time domain using an

algorithm developed by Lindquist and Yakubovich [1]. The absorber designed yields a
distinctively robust performance for a wide range of design frequencies. It does not completely
suppress the oscillations at design frequency but it gives a flat frequency response for a wide range
of frequencies. This leads to better overall performance in the presence of varying or uncertain
excitation frequencies. Like the Johnson algorithm based absorber, its design depends only on
excitation frequencies, and is independent of the amplitudes and phases. The designed regulator is
optimal for all values of amplitudes and phases. The design of the controller is done in the
discrete-time domain, and hence it can be directly implemented using a digital computer.
The following section presents some important elements of the Lindquist–Yakubovich

algorithm required to solve the problem presented. Then the design and simulation results are
presented along with a comparative analysis of this and earlier approaches.

2. Theory

Consider a linear, time-invariant, discrete-time dynamical system affected by an additive
sinusoidal disturbance with known frequencies but unknown amplitudes:

xtþ1 ¼ Axt þ But þ Cot; x0 ¼ a: ð1Þ

fxtg is an n-dimensional state sequence, futg is a k-dimensional real control sequence and

ot ¼

a1 cosðy1t þ j1Þ

a2 cosðy2t þ j2Þ

^

an cosðynt þ jnÞ

0
BBB@

1
CCCA ð2Þ

is an n-dimensional real sinusoidal disturbance with known frequencies

�poy1oy2o?oynop ð3Þ

but unknown amplitudes a1; a2;y; an; and phases j1;j2;y;jn; and A;B;C are given real
matrices of appropriate dimensions so that ðA;BÞ is a stabilizable pair and C has no trivial (i.e.,
zero) columns.
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The control objective is to minimize the cost functional given by

F ¼ lim sup
T-N

1

T

X
t¼0

Lðxt; utÞ; ð4Þ

where Lðx; uÞ has the real quadratic form

Lðx; uÞ ¼
x

u

 !n

Q S

Sn R0

 !
x

u

 !
ð5Þ

with Q and R0 symmetric, i.e., Q ¼ Qn and R ¼ Rn
0:

It is desired that the regulator, which is stabilizing and optimal in the sense that it minimizes the
cost functional F; satisfies the following conditions:

1. The regulator should be realizable i.e., it should utilize a finite bounded memory,

ut ¼ #fðxt; xt�1;y;xt�t; ut�1;y; ut�tÞ; ð6Þ

for some t:
2. The function #f; corresponding to the optimal regulator should not depend on the amplitudes
and phases of the disturbance signal. However, the cost function, F and the process ðxt; utÞ
depend on the amplitudes and phases.

3. The optimal regulator should be robust with respect to known frequencies y1; y2;y; yn: In
practice, the regulator will be computed from estimates #y1; #y2;y; #yn of the true frequencies
y1; y2;y; yn: Therefore, the cost functional must be continuous in the estimation errors
y1 � #y1; y2 � #y2;y; yn � #yn; and must tend to its true optimal value as the errors tend to zero.

The optimal regulator designed using Lyapunov functions for the standard plant (1) affected by
harmonic disturbances (2) is unrealizable. It depends on the amplitudes and phases of the
disturbance. However, if it is possible to find a regulator that yields the same closed-loop process
ðxt; utÞ and is still realizable, then the problem would be solved.
Lindquist and Yakubovich [1] first solved a complex optimization problem, which encompasses

the real optimization problem, and thus derived a regulator that yields an unrealizable but
stabilizing closed-loop process ðxt; utÞ: Then they considered a class of regulators which was
realizable and derived a set of conditions that its parameters need to satisfy to yield the same
closed-loop process ðxt; utÞ as that with the optimal but unrealizable regulator. This class
encompasses all realizable optimal regulators. it is given by

DðsÞut ¼ NðsÞxt; ð7Þ

where s is the forward shift operator ðsxt ¼ xtþ1Þ: DðlÞ and NðlÞ are k � k and k � n matrices
respectively. They are given by

DðlÞ ¼ RðlÞB þ rðlÞIk; ð8Þ

NðlÞ ¼ RðlÞðlIn � GÞ; ð9Þ
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where

1. G ¼ A þ BK : K is the control gain for the simple optimal control problem,

K ¼ �ðBnPB þ RÞ�1ðAnPB þ SÞn; ð10Þ

where P is the stabilizing solution of the algebraic Riccati equation,

P ¼ AnPA � ðAnPB þ SÞðBnPB þ RÞ�1ðAnPB þ SÞn þ Q: ð11Þ

The symmetric solution, P; if it exists renders the feedback matrix, G stable.
2. rðlÞ is an arbitrarily chosen, real, scalar, stable polynomial. The order of rðlÞ is equal to the
number of distinct complex frequencies in the disturbance signal. The coefficients of rðlÞ
should be chosen such that all roots of the polynomial lie within the unit circle. The freedom in
choosing the coefficients gives flexibility in the design of the regulator.

3. RðlÞ is a real k � n matrix polynomial such that degRðlÞpdeg rðlÞ; and it is found by solving
the interpolation conditions given by

Rðeiyj ÞCej ¼ rðeiyj ÞYðeiyj ÞPCej; j ¼ 1; 2;y;m; ð12Þ

where

YðlÞ ¼ ðBnPB þ RÞ�1BnðlGn � IÞ�1; ð13Þ

ej is the jth column of the k � k identity matrix, Ik: Eq. (12) is obtained by equating the closed-
loop solution of the plant with the optimal unrealizable regulator with that of the plant with the
regulator of Eqs. (8) and (9). If cj ¼ Ceja0; the jth interpolation condition of Eq. (12) can be
written as

Rðeiyj Þ ¼ rðeiyj ÞYðeiyj ÞPcjðcnj cjÞ
�1cnj : ð14Þ

3. Numerical results

The continuous time model of a single-degree-of-freedom spring–mass system subjected to
external excitation wðtÞ is given by

’x ¼ Acxþ fcuðtÞ þ bcoðtÞ; xð0Þ ¼ x0; ð15Þ

where

Ac ¼
0 1

�k=m 0

 !
; fc ¼ bc ¼

0

1

 !
: ð16Þ

The simulations presented are for the spring stiffness k ¼ 10 N m�1 and the mass m ¼ 1 kg:
The continuous time model (15) is discretized to get

xtþ1 ¼ Axt þ fut þ bot; ð17Þ

where A ¼ eAcTs ; and f ¼
R Ts

0 e
Actfc dt ¼ b:
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For simulations, the frequency of the excitation was taken to be equal to the resonance
frequency of the system. Therefore, the differential equation governing the excitation is

.oþ b1o ¼ 0; b1 ¼ k=m; b2 ¼ 0: ð18Þ

In a real implementation, the excitation changes continuously whereas the control input
changes at discrete time intervals. Simulations were carried such that they reflect the continuous
nature of the excitation, and the discrete nature of the controller.
The weighting matrices chosen were

Q ¼
1:5 0

0 0

 !
; R0 ¼ 0:0001: ð19Þ

Q and R0 were chosen such that the designed absorber requires the same maximum control
effort ðumaxÞ as the Johnson algorithm based absorber studied in Ref. [2] at the design frequency so
that we can make a fair comparison of the performance of the two absorbers. Both absorbers are
designed by assuming that the excitation frequency is equal to the natural frequency of the system.
The non-zero real frequency, y ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
in the disturbance corresponds to two distinct complex

frequencies, 7iy; in the complex optimization problem. Hence, we choose rðlÞ to be of order 2.
Both roots of rðlÞ should be within the unit circle. The choice of the polynomial does not affect
the cost functional but it may affect the transient response. For example, it could affect the peak
value of control input required in the transient process. The simulation results presented in the
paper are for rðlÞ ¼ l2 þ 1:4lþ 0:85:
Next, a real 1� 2 matrix polynomial of degree one,

RðlÞ ¼ R1ðlÞ R2ðlÞð Þ ¼ r11lþ r12 r21lþ r22ð Þ; ð20Þ

was found by solving the two sets of equations resulting from the interpolation conditions (14):

cosðyÞ 1

sinðyÞ 0

 !
rk1

rk2

 !
¼

ReðrhskÞ

ImðrhskÞ

 !
; k ¼ 1; 2; ð21Þ

where ðrhs1 rhs2Þ is the right hand side of equation (14), Re(.) denotes the real part and Im(.) the
imaginary part.
Upon solving the above equations, R1ðlÞ ¼ 0:0640l� 0:0064; R2ðlÞ ¼ 2:5539l� 0:2563: The

eigenvalues of the closed loop system are �0:77i0:6;�0:76387i0:5041; 0:63157i0:2745:
Fig. 1 shows the frequency responses of the Lindquist–Yakubovich (LY) algorithm based

absorber and the Johnson algorithm based absorber. The Johnson absorber completely
suppresses the oscillations at the design frequency (which was taken to be equal to the natural
frequency of the system), whereas the LY absorber has a non-zero steady state amplitude at the
design frequency. But unlike the Johnson absorber, the LY absorber is robust with respect to
deviations of the excitation frequency from the design value. It yields a smaller steady state
amplitude than the Johnson absorber at most non-design excitations frequencies.
The performance of the Johnson absorber is highly sensitive to the design frequency. The

frequency response of the Johnson absorber closed-loop system with design frequency equal toffiffiffiffiffi
10

p
onat is shown in Fig. 2. Again, the oscillations are totally suppressed at the design frequency

but the performance at other frequencies deteriorates. The response observed at onat may be

ARTICLE IN PRESS

P. Bhatta, A. Sinha / Journal of Sound and Vibration 268 (2003) 201–208 205



unacceptable. We will have this situation for all Johnson absorbers whose design frequency is not
equal to the natural frequency of the system. Unlike the Johnson absorber, the LY absorber
retains the quality of the closed-loop performance for a wide range of design frequencies. Fig. 3

ARTICLE IN PRESS

Fig. 1. Frequency response of the closed-loop system: —, LY; - - -, Johnson.

Fig. 2. Frequency response of the closed-loop system with Johnson algorithm based vibration absorber: —, odes ¼
onat; - - -, odes ¼ 3:16onat:
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shows the frequency response of the closed-loop system for odcs ¼
ffiffiffiffiffi
10

p
onat: The LY algorithm

yields an optimal regulator which has similar characteristics for frequencies not equal to natural
frequency of the system.
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Fig. 3. Frequency response of the closed-loop system with LY algorithm based vibration absorber: —, odes ¼ onat; - - -,
odes ¼ 3:16onat:

Fig. 4. Transient response of the closed-loop system, o ¼ odes ¼ onat: —, LY; - - -, Johnson.
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The LY absorber has a faster transient response. Fig. 4 shows the responses with odes ¼ onat:
The excitation frequency used is onat: Thus, although the steady state amplitude of the closed-loop
system with LY absorber is non-zero at the design frequency, its transient response is better than
that of the closed-loop system with the Johnson absorber.

4. Conclusions

A linear discrete-time optimal control algorithm developed by Lindquist and Yakubovich [1]
has been proposed for vibration control using active absorbers. The algorithm was applied to
suppress the oscillations of a spring–mass system subjected to an additive sinusoidal disturbance.
Numerical simulations showed that the performance of the resulting closed-loop system is robust
with respect to excitation frequencies. The overall performance of the system was found to be
better than that of the Johnson algorithm based absorber [2]. Moreover, the design being done in
the discrete-time domain, the regulator can be directly implemented using a digital computer.
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